Ring Transformation Reaction of 1,2,4,5-Tetrazines to 1,2,4-Triazin-5-ols and -5-thiols by Isocyanato- and Isothiocyanatotrimethylsilane

Masahiko TAKAHASHI^{*} and Hiroyasu KIKUCHI Department of Industrial Chemistry, Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316

A new ring transformation reaction of 1,2,4,5-tetrazines to 1,2,4-triazin-5-ols and -5-thiols on treatment with isocyanatoand isothiocyanatotrimethylsilane, respectively, is described.

Isocyanatotrimethylsilane (TMS-NCO) and isothiocyanatotrimethylsilane (TMS-NCS) behave as electrophiles, $^{1)}$ nucleophiles, $^{2)}$ and dienophiles in cycloaddition reactions. $^{3)}$ However, their applications to organic synthesis have been less studied than other silylated pseudo-halides such as azido-, cyano-, and halogenotrimethylsilane. $^{4)}$ In the previous paper $^{5)}$ intending to use organosilicon reagents for heterocyclic synthesis, we have reported a ring transformation reaction of 1,2,4,5-tetrazines ($\underline{1}$) to 4-aminopyrazoles by use of cyanotrimethylsilane (TMS-CN). Consideration of the reaction mechanism led us to an idea that a reaction of $\underline{1}^{6)}$ with TMS-NCO or TMS-NCS instead of TMS-CN would proceed through a similar reaction pathway to give 1,2,4-triazin-5-ols or -5-thiols, respectively. Now this new ring transformation reaction has been achieved and is reported in this paper.

Treatment of $\underline{1a}$ - \underline{d} (0.1 mmol) with TMS-NCO (2.0 mmol) in DMF (5-10 ml) at room temperature or at reflux under nitrogen atmosphere gave 1,2,4-triazin-5-ols

 $\frac{1}{2}$, $\frac{7}{8}$ a: R=2-pyridyl, b: R=3-pyridyl, c: R=4-pyridyl, d: R=CO₂Me

818 Chemistry Letters, 1988

 $(7a-d)^{7}$ in good yields. Similar treatment of <u>1a</u>, <u>c</u> with TMS-NCS afforded 1,2,4-triazine-5-thiones (<u>8a</u>, <u>c</u>), ⁷⁾ whereas <u>1b</u>, <u>d</u> yielded unseparable mixtures. Neither TMS-NCO nor TMS-NCS reacted with diphenyltetrazine. The structures of <u>7</u> and <u>8</u> were established especially on the basis of the similarity of the UV spectrum of <u>7a</u> to that of 6-phenyl-3-(2-pyridyl)-1,2,4-triazin-5-one ⁸⁾ and conversion of <u>7c</u> to <u>8c</u> in 78% yield on treatment with Lawesson's reagent ⁹⁾ in pyridine at reflux, excluding isomeric 1,3,4-oxadiazines (<u>11</u>) and 1,3,4-thiadiazines (<u>12</u>) whose formations would be possible according to the reaction mechanisms mentioned below.

The reaction would begin with attack of isocyanate or isothiocyanate anion²⁾ on the C-3 position of $\underline{1}$, similarly to the reaction of $\underline{1}$ with TMS-CN,⁵⁾ to give $\underline{4}$, which would cyclize¹⁰⁾ to yield bicyclic intermediates $\underline{5}$ or $\underline{6}$. Subsequent extrusion of nitrogen from $\underline{5}$ or $\underline{6}$ would result in the formation of $\underline{7}$ or $\underline{8}$. On the other hand, attack of cyanate or thiocyanate anion, arising from an equilibrium $2 \rightleftharpoons 3$, on $\underline{1}$ to form $\underline{11}$ or $\underline{12}$ through intermediates $\underline{9}$ and $\underline{10}$ was not observed in the present case. An alternative route to $\underline{7}$ and $\underline{8}$ through $\underline{5}$ obtainable on cycloaddition³⁾ of TMS-NCX to $\underline{1}^{11}$) was excluded because no reaction of $\underline{1}$ with methyl or phenyl isocyanate in DMF occurred.

References

- 1) K. A. Paker and E. G. Gibbons, Tetrahedron Lett., 1975, 981; R. Crossley and R. G. Shepherd, J. Chem. Soc., Perkin Trans. 1, 1985, 1917.
- K. Nishiyama and M. Oba, Bull. Chem. Soc. Jpn., <u>60</u>, 2692 (1987); T. Sasaki,
 A. Nakanishi, and M. Ohno, J. Org. Chem., <u>46</u>, 5445 (1981).
- 3) T. Kato and S. Masuda, Chem. Pharm. Bull., 23, 2251 (1975).
- 4) For reviews, W. P. Weber, "Silicon Reagents for Organic Synthesis," Springer-Verlag, Berlin (1983); W. C. Groutas and D. Felker, Synthesis, <u>1980</u>, 861; G. A. Olah and S. C. Narang, Tetrahedron, <u>38</u>, 2225 (1982).
- 5) M. Takahashi and H. Kikuchi, Tetrahedron Lett., 28, 2139 (1987).
- 6) For a review, M. J. Hearn and F. Levy, Org. Prep. Proced. Int., 19, 215 (1987).
- 7) All compounds gave satisfactory elemental analysis. 7a: 94% yield; mp 240-243 °C; MS m/z 251 (M⁺); IR (KBr) 3050-2800, 1642, 1575 cm⁻¹; UV (MeOH) 237 (15 800), 272 (14 600), 315 (10 200) nm. 7b: 85% yield; mp 290-295°C; MS m/z 251 (M⁺); IR (KBr) 2825, 1590, 1575, 1535 cm⁻¹. 7c: 87% yield; mp > 300°C; IR (KBr) 2800, 1605, 1590, 1570 cm⁻¹. 7d: 83% yield; mp 163-165°C; MS m/z 213 (M⁺); IR (KBr) 3150-2800, 1765, 1720, 1635, 1575 cm⁻¹; 1 H-NMR (DMSO-d₆) 5 3.91 (s, 3H), 3.97 (s, 3H), 12.21 (br s, 1H). 8a: 43% yield; mp 220-270°C (assumed to be a mixture of thiol and thione tautomers); MS m/z 267 (M⁺); IR (KBr) 3140 -2750, 1590, 1570 cm⁻¹. 8c: 49% yield (obtained as a salt of acetic acid on recrystallization from acetic acid); mp 265-300°C; MS m/z 267 (M⁺); IR (KBr) 2530, 1695, 1625, 1600 cm⁻¹.
- 8) M. Takahashi, S. Shirahashi, and N. Sugawara, Nippon Kagaku Kaishi, 1973, 1519.
- 9) B. S. Pedersen and S. -O. Lawesson, Tetrahedron, $\underline{35}$, 2433 (1979) and references cited therein.
- 10) M. J. Haddadin, S. J. Firsan, and B. S. Nader, J. Org. Chem., 44, 629 (1979).
- 11) For a review on cycloaddition of 1, D. L. Boger, Tetrahedron, 39, 2869 (1983). (Received February 17, 1988)